Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.12.05.519135

ABSTRACT

Topologically associating domains (TADs) are critical structural units in three-dimensional genome organization of mammalian genome. Dynamic reorganizations of TADs between health and disease states are associated with transcription and other essential genome functions. However, computational methods that can identify reorganized TADs are still in the early stages of development. Here, we present DiffDomain, an algorithm leveraging high-dimensional random matrix theory to identify structurally reorganized TADs using chromatin contact maps. Method comparison using multiple real Hi-C datasets reveals that DiffDomain outperforms alternative methods for FPRs, TPRs, and identifying a new subtype of reorganized TADs. The robustness of DiffDomain and its biological applications are demonstrated by applying on Hi-C data from different cell types and disease states. Identified reorganized TADs are associated with structural variations and changes in CTCF binding sites and other epigenomic changes. By applying to a single-cell Hi-C data from mouse neuronal development, DiffDomain can identify reorganized TADs between cell types with reasonable reproducibility using pseudo-bulk Hi-C data from as few as 100 cells per condition. Moreover, DiffDomain reveals that TADs have clear differential cell-to-population variability and heterogeneous cell-to-cell variability. Therefore, DiffDomain is a statistically sound method for better comparative analysis of TADs using both Hi-C and single-cell Hi-C data.

2.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1197712.v1

ABSTRACT

Background: A range of strict nonpharmaceutical interventions (NPIs) had been implemented in many countries to combat the COVID-19 pandemic. These NPIs might also be effective in controlling the seasonal influenza virus, which share the same transmission path with SARS-CoV-2. The aim of this study is to evaluate the effect of different NPIs for control of seasonal influenza. Methods: : Data on 14 NPIs implemented in 33 countries and corresponding data on influenza virologic surveillance were collected. The influenza suppression index was calculated as the difference between the influenza-positive rate during its decline period from 2019 to 2020 and that during influenza epidemic seasons in the previous 9 years. A machine learning model was developed by using extreme gradient boosting tree (XGBoost) regressor to fit NPI data and influenza suppression index. SHapley Additive exPlanations (SHAP) was used to characterize NPIs in suppressing influenza. Results: : Gathering limitation contributed the most (37.60%) among all NPIs in suppressing influenza transmission in the 2019-2020 influenza season. The top three effective NPIs were gathering limitation, international travel restriction, and school closure. Regarding the three NPIs, their intensity threshold to generate effect were restrictions on the size of gatherings less than 1000 people, travel bans on all regions or total border closure, and closing only some categories of schools, respectively. There was a strong positive interaction effect between mask wearing requirement and gathering limitation, whereas merely implementing mask wearing requirement but ignoring other NPIs would dilute mask wearing requirement’s effectiveness in suppressing influenza. Conclusions: : Gathering limitation, travel bans on all regions or total border closure, and closing some levels of schools are the most effective NPIs to suppress influenza transmission. Mask wearing requirement is advised to be combined with gathering limitation and other NPIs. Our findings could facilitate the precise control of future influenza epidemics and potential pandemics.


Subject(s)
COVID-19 , Influenza, Human
3.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.06.17.20133843

ABSTRACT

Travel and physical distancing interventions have been implemented across the World to mitigate the COVID-19 pandemic, but studies are needed to quantify the effectiveness of these measures across regions and time. Timely population mobility data were obtained to measure travel and contact reductions in 135 countries or territories. During the 10 weeks of March 22 - May 30, 2020, domestic travel in study regions has dramatically reduced to a median of 59% (interquartile range [IQR] 43% - 73%) of normal levels seen before the outbreak, with international travel down to 26% (IQR 12% - 35%). If these travel and physical distancing interventions had not been deployed across the World, the cumulative number of cases might have shown a 97-fold (IQR 79 - 116) increase, as of May 31, 2020. However, effectiveness differed by the duration and intensity of interventions and relaxation scenarios, with variations in case severity seen across populations, regions, and seasons.


Subject(s)
COVID-19
4.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.03.03.20029843

ABSTRACT

Background: The COVID-19 outbreak containment strategies in China based on non-pharmaceutical interventions (NPIs) appear to be effective. Quantitative research is still needed however to assess the efficacy of different candidate NPIs and their timings to guide ongoing and future responses to epidemics of this emerging disease across the World. Methods: We built a travel network-based susceptible-exposed-infectious-removed (SEIR) model to simulate the outbreak across cities in mainland China. We used epidemiological parameters estimated for the early stage of outbreak in Wuhan to parameterise the transmission before NPIs were implemented. To quantify the relative effect of various NPIs, daily changes of delay from illness onset to the first reported case in each county were used as a proxy for the improvement of case identification and isolation across the outbreak. Historical and near-real time human movement data, obtained from Baidu location-based service, were used to derive the intensity of travel restrictions and contact reductions across China. The model and outputs were validated using daily reported case numbers, with a series of sensitivity analyses conducted. Results: We estimated that there were a total of 114,325 COVID-19 cases (interquartile range [IQR] 76,776 - 164,576) in mainland China as of February 29, 2020, and these were highly correlated (p<0.001, R2=0.86) with reported incidence. Without NPIs, the number of COVID-19 cases would likely have shown a 67-fold increase (IQR: 44 - 94), with the effectiveness of different interventions varying. The early detection and isolation of cases was estimated to prevent more infections than travel restrictions and contact reductions, but integrated NPIs would achieve the strongest and most rapid effect. If NPIs could have been conducted one week, two weeks, or three weeks earlier in China, cases could have been reduced by 66%, 86%, and 95%, respectively, together with significantly reducing the number of affected areas. However, if NPIs were conducted one week, two weeks, or three weeks later, the number of cases could have shown a 3-fold, 7-fold, and 18-fold increase across China, respectively. Results also suggest that the social distancing intervention should be continued for the next few months in China to prevent case numbers increasing again after travel restrictions were lifted on February 17, 2020. Conclusion: The NPIs deployed in China appear to be effectively containing the COVID-19 outbreak, but the efficacy of the different interventions varied, with the early case detection and contact reduction being the most effective. Moreover, deploying the NPIs early is also important to prevent further spread. Early and integrated NPI strategies should be prepared, adopted and adjusted to minimize health, social and economic impacts in affected regions around the World.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL